Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Am J Epidemiol ; 2023 May 30.
Article in English | MEDLINE | ID: covidwho-20245245

ABSTRACT

OBJECTIVE: Assess the impact of allocation concealment and blinding on the results of COVID-19 trials. DATA SOURCES: World Health Organization (WHO) COVID-19 database (up to February 2022) Methods: We included randomized trials that compared drug therapeutics with placebo or standard care in patients with COVID-19. We performed random-effects meta-regressions comparing the results of trials with and without allocation concealment and blinding of healthcare providers and patients. RESULTS: We identified 488 trials. We found that, compared to trials with allocation concealment, trials without allocation concealment may estimate treatments to be more beneficial for mortality, mechanical ventilation, hospital admission, duration of hospitalization, and duration of mechanical ventilation, but results were imprecise. We did not find compelling evidence that, compared to trials with blinding, trials without blinding produce consistently different results for mortality, mechanical ventilation, and duration of hospitalization. We found that trials without blinding may estimate treatments to be more beneficial for hospitalizations and duration of mechanical ventilation. CONCLUSION: We did not find compelling evidence that COVID-19 trials in which healthcare providers and patients are blinded produce different results from trials without blinding but trials without allocation concealment estimate treatments to be more beneficial compared to trials with allocation concealment. What's new? Additional information: For decades, allocation concealment (the concealment of the randomization sequence from personnel enrolling participants) and blinding (the concealment of the arm to which participants have been randomized from one or more individuals involved in a trial) have been important considerations in the assessment of risk of bias of trials. Previous studies have produced conflicting results with regards to the associations of blinding and allocation concealment and none have investigated the associations of allocation concealment and blinding in the context of COVID-19. IMPLICATIONS: Our study suggests that lack of blinding may not always bias results but that evidence users should remain skeptical of trials without allocation concealment.

2.
BMJ medicine ; 1(1), 2022.
Article in English | EuropePMC | ID: covidwho-2288430

ABSTRACT

Objective To assess the trustworthiness (ie, complete and consistent reporting of key methods and results between preprint and published trial reports) and impact (ie, effects of preprints on meta-analytic estimates and the certainty of evidence) of preprint trial reports during the covid-19 pandemic. Design Retrospective review. Data sources World Health Organization covid-19 database and the Living Overview of the Evidence (L-OVE) covid-19 platform by the Epistemonikos Foundation (up to 3 August 2021). Main outcome measures Comparison of characteristics of covid-19 trials with and without preprints, estimates of time to publication of covid-19 preprints, and description of differences in reporting of key methods and results between preprints and their later publications. For the effects of eight treatments on mortality and mechanical ventilation, the study comprised meta-analyses including preprints and excluding preprints at one, three, and six months after the first trial addressing the treatment became available either as a preprint or publication (120 meta-analyses in total, 60 of which included preprints and 60 of which excluded preprints) and assessed the certainty of evidence using the GRADE framework. Results Of 356 trials included in the study, 101 were only available as preprints, 181 as journal publications, and 74 as preprints first and subsequently published in journals. The median time to publication of preprints was about six months. Key methods and results showed few important differences between trial preprints and their subsequent published reports. Apart from two (3.3%) of 60 comparisons, point estimates were consistent between meta-analyses including preprints versus those excluding preprints as to whether they indicated benefit, no appreciable effect, or harm. For nine (15%) of 60 comparisons, the rating of the certainty of evidence was different when preprints were included versus being excluded—the certainty of evidence including preprints was higher in four comparisons and lower in five comparisons. Conclusion No compelling evidence indicates that preprints provide results that are inconsistent with published papers. Preprints remain the only source of findings of many trials for several months—an unsuitable length of time in a health emergency that is not conducive to treating patients with timely evidence. The inclusion of preprints could affect the results of meta-analyses and the certainty of evidence. Evidence users should be encouraged to consider data from preprints.

3.
BMJ medicine ; 1(1), 2022.
Article in English | EuropePMC | ID: covidwho-2288429

ABSTRACT

Objective To compare the effects of interleukin 6 receptor blockers, tocilizumab and sarilumab, with or without corticosteroids, on mortality in patients with covid-19. Design Systematic review and network meta-analysis. Data sources World Health Organization covid-19 database, a comprehensive multilingual source of global covid-19 literature, and two prospective meta-analyses (up to 9 June 2021). Review methods Trials in which people with suspected, probable, or confirmed covid-19 were randomised to interleukin 6 receptor blockers (with or without corticosteroids), corticosteroids, placebo, or standard care. The analysis used a bayesian framework and assessed the certainty of evidence using the GRADE approach. Results from the fixed effect meta-analysis were used for the primary analysis. Results Of 45 eligible trials (20 650 patients) identified, 36 (19 350 patients) could be included in the network meta-analysis. Of 36 trials, 27 were at high risk of bias, primarily due to lack of blinding. Tocilizumab, in combination with corticosteroids, suggested a reduction in the risk of death compared with corticosteroids alone (odds ratio 0.79, 95% credible interval 0.70 to 0.88;35 fewer deaths per 1000 people, 95% credible interval 52 fewer to 18 fewer per 1000;moderate certainty of evidence), as did sarilumab in combination with corticosteroids, compared with corticosteroids alone (0.73, 0.58 to 0.92;43 fewer per 1000, 73 fewer to 12 fewer;low certainty). Tocilizumab and sarilumab, each in combination with corticosteroids, appeared to have similar effects on mortality when compared with each other (1.07, 0.86 to 1.34;eight more per 1000, 20 fewer to 35 more;low certainty). The effects of tocilizumab (1.12, 0.91 to 1.38;20 more per 1000, 16 fewer to 59 more;low certainty) and sarilumab (1.07, 0.81 to 1.40;11 more per 1000, 38 fewer to 55 more;low certainty), when used alone, suggested an increase in the risk of death. Conclusion These findings suggest that in patients with severe or critical covid-19, tocilizumab, in combination with corticosteroids, probably reduces mortality, and that sarilumab, in combination with corticosteroids, might also reduce mortality. Tocilizumab and sarilumab, in combination with corticosteroids, could have similar effectiveness. Tocilizumab and sarilumab, when used alone, might not be beneficial.

4.
PLoS One ; 18(3): e0278356, 2023.
Article in English | MEDLINE | ID: covidwho-2289020

ABSTRACT

BACKGROUND AND AIMS: Oral probiotic supplementation may be a beneficial adjunctive therapy for patients with symptomatic COVID-19. However, its safety and efficacy are unclear. We aimed to investigate how probiotic supplementation impacts COVID-19 symptom trajectory and patient outcomes by conducting a systematic review and meta-analysis of randomized controlled trials (RCTs). METHODS: RCTs randomizing patients with COVID-19 to probiotics were searched in PubMed Central, Embase, CINAHL, and Cochrane Library from inception to July 31, 2022. We performed a random-effects pairwise meta-analysis for all outcomes using the restricted maximum likelihood (REML) estimator. We used the GRADE approach to assess the certainty of the evidence. RESULTS: A total of 1027 participants from eight RCT studies were included in the meta-analysis. Probiotic supplements probably reduce the incidence of diarrhea (RR 0.61 [0.43 to 0.87]; moderate certainty) and probably reduce cough or dyspnea compared to placebo/standard care (RR 0.37 [0.19 to 0.73]; moderate certainty). Probiotic supplements may improve composite endpoint measured by clinical escalation or mortality compared to placebo (RR 0.41 [0.18 to 0.93]; low certainty evidence); however, they may not significantly reduce the need for clinical escalation (RR 0.57 [0.31 to 1.07]; low certainty evidence) or mortality (RR 0.50 [0.20 to 1.29]; low certainty evidence). In addition, the probiotic supplement is associated with reduced adverse events (RR 0.62 [0.46 to 0.83]; moderate certainty). CONCLUSION: Early probiotic supplement is a safe and effective adjunctive therapy that reduces the risk of symptoms and health care burden related to COVID-19 across all severity types.


Subject(s)
COVID-19 , Probiotics , Humans , COVID-19/complications , Probiotics/adverse effects , Diarrhea/etiology , Dental Care
5.
J Clin Epidemiol ; 157: 1-12, 2023 05.
Article in English | MEDLINE | ID: covidwho-2276593

ABSTRACT

OBJECTIVES: Adaptive platforms allow for the evaluation of multiple interventions at a lower cost and have been growing in popularity, especially during the COVID-19 pandemic. The objective of this review is to summarize published platform trials, examine specific methodological design features among these studies, and hopefully aid readers in the evaluation and interpretation of platform trial results. METHODS: We performed a systematic review of EMBASE, MEDLINE, Cochrane Central Register of Controlled Trials (CENTRAL), and clinicaltrials.gov from January 2015 to January 2022 for protocols or results of platform trials. Pairs of reviewers, working independently and in duplicate, collected data on trial characteristics of trial registrations, protocols, and publications of platform trials. We reported our results using total numbers and percentages, as well as medians with interquartile range (IQR) when appropriate. RESULTS: We identified 15,277 unique search records and screened 14,403 titles and abstracts after duplicates were removed. We identified 98 unique randomized platform trials. Sixteen platform trials were sourced from a systematic review completed in 2019, which included platform trials reported prior to 2015. Most platform trials (n = 67, 68.3%) were registered between 2020 and 2022, coinciding with the COVID-19 pandemic. The included platform trials primarily recruited or plan to recruit patients from North America or Europe, with most subjects being recruited from the United States (n = 39, 39.7%) and the United Kingdom (n = 31, 31.6%). Bayesian methods were used in 28.6% (n = 28) of platform RCTs and frequentist methods in 66.3% (n = 65) of trials, including 1 (1%) that used methods from both paradigms. Out of the twenty-five trials with peer-reviewed publication of results, seven trials used Bayesian methods (28%), and of those, two (8%) used a predefined sample size calculation while the remainder used pre-specified probabilities of futility, harm, or benefit calculated at (pre-specified) intervals to inform decisions about stopping interventions or the entire trial. Seventeen (68%) peer-reviewed publications used frequentist methods. Out of the seven published Bayesian trials, seven (100%) reported thresholds for benefit. The threshold for benefit ranged from 80% to >99%. CONCLUSION: We identified and summarized key components of platform trials, including the basics of the methodological and statistical considerations. Ultimately, improving standardization and reporting in platform trials require an understanding of the current landscape. We provide the most updated and rigorous review of platform trials to date.


Subject(s)
COVID-19 , Pandemics , Humans , Bayes Theorem , COVID-19/epidemiology , Europe , United Kingdom
6.
Ann Am Thorac Soc ; 2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-2276595

ABSTRACT

RATIONALE: Corticosteroids are standard of care for patients with severe COVID-19. However, the optimal dose is uncertain. OBJECTIVE: To compare higher doses of corticosteroids with lower doses in patients with COVID-19. METHODS: We searched MEDLINE, Embase, Cochrane Central Register of Controlled Trials, MedRxiv, and Web of Science from inception to August 1st, 2022, for trials that randomized patients with severe-to-critical COVID-19 to corticosteroids, standard care, or placebo. Reviewers, working in duplicate, screened references, extracted data, and assessed risk of bias using a modified version of the Cochrane risk of bias 2.0 tool. We performed a dose-response meta-analysis and used the GRADE framework to assess the certainty of evidence. We present our results both in relative risk and absolute risk difference (RD) per 1000 with 95% confidence intervals (CI). RESULTS: We included 20 trials, with 10,155 patients. We show that, compared to lower-dose corticosteroids, higher-dose corticosteroids probably reduce mortality (RD 14 fewer deaths per 1000 [95% CI 26 to 2 fewer]; moderate certainty) and may reduce the need for mechanical ventilation (RD 11.6 fewer per 1000 [95% CI 23.2 fewer to 6.9 more]; low certainty). The effect of corticosteroids on nosocomial infections is uncertain (16.7 fewer infections per 1000 [95% CI 5.4 to 25.0 fewer]; very low certainty). CONCLUSIONS: Relatively higher doses of corticosteroids may be beneficial in patients with severe-to-critical COVID-19 and may not increase the risk of nosocomial infections. .

7.
CMAJ ; 194(28): E969-E980, 2022 07 25.
Article in English | MEDLINE | ID: covidwho-1963063

ABSTRACT

BACKGROUND: Randomized trial evidence suggests that some antiviral drugs are effective in patients with COVID-19. However, the comparative effectiveness of antiviral drugs in nonsevere COVID-19 is unclear. METHODS: We searched the Epistemonikos COVID-19 L·OVE (Living Overview of Evidence) database for randomized trials comparing antiviral treatments, standard care or placebo in adult patients with nonsevere COVID-19 up to Apr. 25, 2022. Reviewers extracted data and assessed risk of bias. We performed a frequentist network meta-analysis and assessed the certainty of evidence using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. RESULTS: We identified 41 trials, which included 18 568 patients. Compared with standard care or placebo, molnupiravir and nirmatrelvir-ritonavir each reduced risk of death with moderate certainty (10.9 fewer deaths per 1000, 95% confidence interval [CI] 12.6 to 4.5 fewer for molnupiravir; 11.7 fewer deaths per 1000, 95% CI 13.1 fewer to 2.6 more). Compared with molnupiravir, nirmatrelvir-ritonavir probably reduced risk of hospital admission (27.8 fewer admissions per 1000, 95% CI 32.8 to 18.3 fewer; moderate certainty). Remdesivir probably has no effect on risk of death, but may reduce hospital admissions (39.1 fewer admissions per 1000, 95% CI 48.7 to 13.7 fewer; low certainty). INTERPRETATION: Molnupiravir and nirmatrelvir-ritonavir probably reduce risk of hospital admissions and death among patients with nonsevere COVID-19. Nirmatrelvir-ritonavir is probably more effective than molnupiravir for reducing risk of hospital admissions. Most trials were conducted with unvaccinated patients, before the emergence of the Omicron variant; the effectiveness of these drugs must thus be tested among vaccinated patients and against newer variants.


Subject(s)
COVID-19 Drug Treatment , Adult , Antiviral Agents/therapeutic use , Humans , Network Meta-Analysis , Ritonavir/therapeutic use , SARS-CoV-2
8.
BMJ Open ; 12(3): e048502, 2022 03 02.
Article in English | MEDLINE | ID: covidwho-1822067

ABSTRACT

BACKGROUND: To summarise specific adverse effects of remdesivir, hydroxychloroquine and lopinavir/ritonavir in patients with COVID-19. METHODS: We searched 32 databases through 27 October 2020. We included randomised trials comparing any of the drugs of interest to placebo or standard care, or against each other. We conducted fixed-effects pairwise meta-analysis and assessed the certainty of evidence using the grading of recommendations assessment, development and evaluation approach. RESULTS: We included 16 randomised trials which enrolled 8152 patients. For most interventions and outcomes the certainty of the evidence was very low to low except for gastrointestinal adverse effects from hydroxychloroquine, which was moderate certainty. Compared with standard care or placebo, low certainty evidence suggests that remdesivir may not have an important effect on acute kidney injury (risk difference (RD) 8 fewer per 1000, 95% CI 27 fewer to 21 more) or cognitive dysfunction/delirium (RD 3 more per 1000, 95% CI 12 fewer to 19 more). Low certainty evidence suggests that hydroxychloroquine may increase the risk of cardiac toxicity (RD 10 more per 1000, 95% CI 0 more to 30 more) and cognitive dysfunction/delirium (RD 33 more per 1000, 95% CI 18 fewer to 84 more), whereas moderate certainty evidence suggests hydroxychloroquine probably increases the risk of diarrhoea (RD 106 more per 1000, 95% CI 48 more to 175 more) and nausea and/or vomiting (RD 62 more per 1000, 95% CI 23 more to 110 more) compared with standard care or placebo. Low certainty evidence suggests lopinavir/ritonavir may increase the risk of diarrhoea (RD 168 more per 1000, 95% CI 58 more to 330 more) and nausea and/or vomiting (RD 160 more per 1000, 95% CI 100 more to 210 more) compared with standard care or placebo. DISCUSSION: Hydroxychloroquine probably increases the risk of diarrhoea and nausea and/or vomiting and may increase the risk of cardiac toxicity and cognitive dysfunction/delirium. Lopinavir/ritonavir may increase the risk of diarrhoea and nausea and/or vomiting. Remdesivir may have no important effect on risk of acute kidney injury or cognitive dysfunction/delirium. These findings provide important information to support the development of evidence-based management strategies for patients with COVID-19.


Subject(s)
Adenosine Monophosphate/adverse effects , Alanine/adverse effects , COVID-19 Drug Treatment , Hydroxychloroquine , Lopinavir/adverse effects , Ritonavir/adverse effects , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Drug Combinations , Humans , Hydroxychloroquine/adverse effects , Randomized Controlled Trials as Topic , SARS-CoV-2
9.
Syst Rev ; 10(1): 289, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1496222

ABSTRACT

BACKGROUND: The coronavirus disease 19 (covid-19) pandemic has underscored the need to expedite clinical research, which may lead investigators to shift away from measuring patient-important outcomes (PIO), limiting research applicability. We aim to investigate if randomized controlled trials (RCTs) of covid-19 pharmacological therapies include PIOs. METHODS: We will perform a meta-epidemiological study of RCTs that included people at risk for, or with suspected, probable, or confirmed covid-19, examining any pharmacological treatment or blood product aimed at prophylaxis or treatment. We will obtain data from all RCTs identified in a living network metanalysis (NMA). The main data sources are the living WHO covid-19 database up to 1 March 2021 and six additional Chinese databases up to 20 February 2021. Two reviewers independently will review each citation, full-text article, and abstract data. To categorize the outcomes according to their importance to patients, we will adapt a previously defined hierarchy: a) mortality, b) quality of life/ functional status/symptoms, c) morbidity, and d) surrogate outcomes. Outcomes within the category a) and b) will be considered critically important to patients, and outcomes within the category c) will be regarded as important. We will use descriptive statistics to assess the proportion of studies that report each category of outcomes. We will perform univariable and multivariable analysis to explore associations between trial characteristics and the likelihood of reporting PIOs. DISCUSSION: The findings from this meta-epidemiological study will help health care professionals and researchers understand if the current covid-19 trials are effectively assessing and reporting the outcomes that are important to patients. If a deficiency in capturing PIOs is identified, this information may help inform the development of future RCTs in covid-19. SYSTEMATIC REVIEW REGISTRATIONS: Open Science Framework registration: osf.io/6xgjz .


Subject(s)
COVID-19 , Epidemiologic Studies , Humans , Patient Reported Outcome Measures , Randomized Controlled Trials as Topic , SARS-CoV-2 , Systematic Reviews as Topic
10.
J Clin Epidemiol ; 139: 68-79, 2021 11.
Article in English | MEDLINE | ID: covidwho-1466592

ABSTRACT

OBJECTIVE: To describe the characteristics of Covid-19 randomized clinical trials (RCTs) and examine the association between trial characteristics and the likelihood of finding a significant effect. STUDY DESIGN: We conducted a systematic review to identify RCTs (up to October 21, 2020) evaluating drugs or blood products to treat or prevent Covid-19. We extracted trial characteristics (number of centers, funding sources, and sample size) and assessed risk of bias (RoB) using the Cochrane RoB 2.0 tool. We performed logistic regressions to evaluate the association between RoB due to randomization, single vs. multicentre, funding source, and sample size, and finding a statistically significant effect. RESULTS: We included 91 RCTs (n = 46,802); 40 (44%) were single-center, 23 (25.3%) enrolled <50 patients, 28 (30.8%) received industry funding, and 75 (82.4%) had high or probably high RoB. Thirty-eight trials (41.8%) reported a statistically significant effect. RoB due to randomization and being a single-center trial were associated with increased odds of finding a statistically significant effect. CONCLUSIONS: There is high variability in RoB among Covid-19 trials. Researchers, funders, and knowledge-users should be cognizant of the impact of RoB due to randomization and single-center trial status in designing, evaluating, and interpreting the results of RCTs. REGISTRATION: CRD42020192095.


Subject(s)
COVID-19/prevention & control , Randomized Controlled Trials as Topic/methods , Research Design/standards , COVID-19/epidemiology , Epidemiologic Studies , Humans
11.
BMJ ; 374: n2231, 2021 09 23.
Article in English | MEDLINE | ID: covidwho-1438073

ABSTRACT

OBJECTIVE: To evaluate the efficacy and safety of antiviral antibody therapies and blood products for the treatment of novel coronavirus disease 2019 (covid-19). DESIGN: Living systematic review and network meta-analysis, with pairwise meta-analysis for outcomes with insufficient data. DATA SOURCES: WHO covid-19 database, a comprehensive multilingual source of global covid-19 literature, and six Chinese databases (up to 21 July 2021). STUDY SELECTION: Trials randomising people with suspected, probable, or confirmed covid-19 to antiviral antibody therapies, blood products, or standard care or placebo. Paired reviewers determined eligibility of trials independently and in duplicate. METHODS: After duplicate data abstraction, we performed random effects bayesian meta-analysis, including network meta-analysis for outcomes with sufficient data. We assessed risk of bias using a modification of the Cochrane risk of bias 2.0 tool. The certainty of the evidence was assessed using the grading of recommendations assessment, development, and evaluation (GRADE) approach. We meta-analysed interventions with ≥100 patients randomised or ≥20 events per treatment arm. RESULTS: As of 21 July 2021, we identified 47 trials evaluating convalescent plasma (21 trials), intravenous immunoglobulin (IVIg) (5 trials), umbilical cord mesenchymal stem cells (5 trials), bamlanivimab (4 trials), casirivimab-imdevimab (4 trials), bamlanivimab-etesevimab (2 trials), control plasma (2 trials), peripheral blood non-haematopoietic enriched stem cells (2 trials), sotrovimab (1 trial), anti-SARS-CoV-2 IVIg (1 trial), therapeutic plasma exchange (1 trial), XAV-19 polyclonal antibody (1 trial), CT-P59 monoclonal antibody (1 trial) and INM005 polyclonal antibody (1 trial) for the treatment of covid-19. Patients with non-severe disease randomised to antiviral monoclonal antibodies had lower risk of hospitalisation than those who received placebo: casirivimab-imdevimab (odds ratio (OR) 0.29 (95% CI 0.17 to 0.47); risk difference (RD) -4.2%; moderate certainty), bamlanivimab (OR 0.24 (0.06 to 0.86); RD -4.1%; low certainty), bamlanivimab-etesevimab (OR 0.31 (0.11 to 0.81); RD -3.8%; low certainty), and sotrovimab (OR 0.17 (0.04 to 0.57); RD -4.8%; low certainty). They did not have an important impact on any other outcome. There was no notable difference between monoclonal antibodies. No other intervention had any meaningful effect on any outcome in patients with non-severe covid-19. No intervention, including antiviral antibodies, had an important impact on any outcome in patients with severe or critical covid-19, except casirivimab-imdevimab, which may reduce mortality in patients who are seronegative. CONCLUSION: In patients with non-severe covid-19, casirivimab-imdevimab probably reduces hospitalisation; bamlanivimab-etesevimab, bamlanivimab, and sotrovimab may reduce hospitalisation. Convalescent plasma, IVIg, and other antibody and cellular interventions may not confer any meaningful benefit. SYSTEMATIC REVIEW REGISTRATION: This review was not registered. The protocol established a priori is included as a data supplement. FUNDING: This study was supported by the Canadian Institutes of Health Research (grant CIHR- IRSC:0579001321). READERS' NOTE: This article is a living systematic review that will be updated to reflect emerging evidence. Interim updates and additional study data will be posted on our website (www.covid19lnma.com).


Subject(s)
Antibodies, Viral/therapeutic use , COVID-19/therapy , Cell- and Tissue-Based Therapy/methods , SARS-CoV-2/immunology , Antibodies, Monoclonal/therapeutic use , Antiviral Agents/therapeutic use , Bayes Theorem , COVID-19/immunology , Clinical Trials as Topic , Humans , Immunization, Passive , Network Meta-Analysis , Treatment Outcome , COVID-19 Serotherapy
12.
BMJ ; 373: n949, 2021 04 26.
Article in English | MEDLINE | ID: covidwho-1203960

ABSTRACT

OBJECTIVE: To determine and compare the effects of drug prophylaxis on SARS-CoV-2 infection and covid-19. DESIGN: Living systematic review and network meta-analysis. DATA SOURCES: World Health Organization covid-19 database, a comprehensive multilingual source of global covid-19 literature to 25 March 2021, and six additional Chinese databases to 20 February 2021. STUDY SELECTION: Randomised trials of people at risk of covid-19 who were assigned to receive prophylaxis or no prophylaxis (standard care or placebo). Pairs of reviewers independently screened potentially eligible articles. METHODS: Random effects bayesian network meta-analysis was performed after duplicate data abstraction. Included studies were assessed for risk of bias using a modification of the Cochrane risk of bias 2.0 tool, and certainty of evidence was assessed using the grading of recommendations assessment, development, and evaluation (GRADE) approach. RESULTS: The first iteration of this living network meta-analysis includes nine randomised trials-six of hydroxychloroquine (n=6059 participants), one of ivermectin combined with iota-carrageenan (n=234), and two of ivermectin alone (n=540), all compared with standard care or placebo. Two trials (one of ramipril and one of bromhexine hydrochloride) did not meet the sample size requirements for network meta-analysis. Hydroxychloroquine has trivial to no effect on admission to hospital (risk difference 1 fewer per 1000 participants, 95% credible interval 3 fewer to 4 more; high certainty evidence) or mortality (1 fewer per 1000, 2 fewer to 3 more; high certainty). Hydroxychloroquine probably does not reduce the risk of laboratory confirmed SARS-CoV-2 infection (2 more per 1000, 18 fewer to 28 more; moderate certainty), probably increases adverse effects leading to drug discontinuation (19 more per 1000, 1 fewer to 70 more; moderate certainty), and may have trivial to no effect on suspected, probable, or laboratory confirmed SARS-CoV-2 infection (15 fewer per 1000, 64 fewer to 41 more; low certainty). Owing to serious risk of bias and very serious imprecision, and thus very low certainty of evidence, the effects of ivermectin combined with iota-carrageenan on laboratory confirmed covid-19 (52 fewer per 1000, 58 fewer to 37 fewer), ivermectin alone on laboratory confirmed infection (50 fewer per 1000, 59 fewer to 16 fewer) and suspected, probable, or laboratory confirmed infection (159 fewer per 1000, 165 fewer to 144 fewer) remain very uncertain. CONCLUSIONS: Hydroxychloroquine prophylaxis has trivial to no effect on hospital admission and mortality, probably increases adverse effects, and probably does not reduce the risk of SARS-CoV-2 infection. Because of serious risk of bias and very serious imprecision, it is highly uncertain whether ivermectin combined with iota-carrageenan and ivermectin alone reduce the risk of SARS-CoV-2 infection. SYSTEMATIC REVIEW REGISTRATION: This review was not registered. The protocol established a priori is included as a supplement. READERS' NOTE: This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication.


Subject(s)
COVID-19 , Carrageenan/pharmacology , Global Health/statistics & numerical data , Hydroxychloroquine/pharmacology , Ivermectin/pharmacology , Anti-Infective Agents/pharmacology , COVID-19/prevention & control , Chemoprevention/methods , Chemoprevention/statistics & numerical data , Humans , SARS-CoV-2 , Treatment Outcome , Uncertainty
13.
BMJ ; 372: n526, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1112324

ABSTRACT

CLINICAL QUESTION: What is the role of drugs in preventing covid-19? WHY DOES THIS MATTER?: There is widespread interest in whether drug interventions can be used for the prevention of covid-19, but there is uncertainty about which drugs, if any, are effective. The first version of this living guideline focuses on the evidence for hydroxychloroquine. Subsequent updates will cover other drugs being investigated for their role in the prevention of covid-19. RECOMMENDATION: The guideline development panel made a strong recommendation against the use of hydroxychloroquine for individuals who do not have covid-19 (high certainty). HOW THIS GUIDELINE WAS CREATED: This living guideline is from the World Health Organization (WHO) and provides up to date covid-19 guidance to inform policy and practice worldwide. Magic Evidence Ecosystem Foundation (MAGIC) provided methodological support. A living systematic review with network analysis informed the recommendations. An international guideline development panel of content experts, clinicians, patients, an ethicist and methodologists produced recommendations following standards for trustworthy guideline development using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. UNDERSTANDING THE NEW RECOMMENDATION: The linked systematic review and network meta-analysis (6 trials and 6059 participants) found that hydroxychloroquine had a small or no effect on mortality and admission to hospital (high certainty evidence). There was a small or no effect on laboratory confirmed SARS-CoV-2 infection (moderate certainty evidence) but probably increased adverse events leading to discontinuation (moderate certainty evidence). The panel judged that almost all people would not consider this drug worthwhile. In addition, the panel decided that contextual factors such as resources, feasibility, acceptability, and equity for countries and healthcare systems were unlikely to alter the recommendation. The panel considers that this drug is no longer a research priority and that resources should rather be oriented to evaluate other more promising drugs to prevent covid-19. UPDATES: This is a living guideline. New recommendations will be published in this article and signposted by update notices to this guideline. READERS NOTE: This is the first version of the living guideline for drugs to prevent covid-19. It complements the WHO living guideline on drugs to treat covid-19. When citing this article, please consider adding the update number and date of access for clarity.


Subject(s)
COVID-19/prevention & control , Chemoprevention , Hydroxychloroquine/pharmacology , Risk Assessment , COVID-19/epidemiology , Chemoprevention/methods , Chemoprevention/standards , Clinical Decision-Making/methods , Humans , Immunologic Factors/pharmacology , SARS-CoV-2/drug effects , Uncertainty , World Health Organization
14.
BMJ ; 370: m2980, 2020 07 30.
Article in English | MEDLINE | ID: covidwho-691120

ABSTRACT

OBJECTIVE: To compare the effects of treatments for coronavirus disease 2019 (covid-19). DESIGN: Living systematic review and network meta-analysis. DATA SOURCES: WHO covid-19 database, a comprehensive multilingual source of global covid-19 literature, up to 3 December 2021 and six additional Chinese databases up to 20 February 2021. Studies identified as of 1 December 2021 were included in the analysis. STUDY SELECTION: Randomised clinical trials in which people with suspected, probable, or confirmed covid-19 were randomised to drug treatment or to standard care or placebo. Pairs of reviewers independently screened potentially eligible articles. METHODS: After duplicate data abstraction, a bayesian network meta-analysis was conducted. Risk of bias of the included studies was assessed using a modification of the Cochrane risk of bias 2.0 tool, and the certainty of the evidence using the grading of recommendations assessment, development, and evaluation (GRADE) approach. For each outcome, interventions were classified in groups from the most to the least beneficial or harmful following GRADE guidance. RESULTS: 463 trials enrolling 166 581 patients were included; 267 (57.7%) trials and 89 814 (53.9%) patients are new from the previous iteration; 265 (57.2%) trials evaluating treatments with at least 100 patients or 20 events met the threshold for inclusion in the analyses. Compared with standard care, three drugs reduced mortality in patients with mostly severe disease with at least moderate certainty: systemic corticosteroids (risk difference 23 fewer per 1000 patients, 95% credible interval 40 fewer to 7 fewer, moderate certainty), interleukin-6 receptor antagonists when given with corticosteroids (23 fewer per 1000, 36 fewer to 7 fewer, moderate certainty), and Janus kinase inhibitors (44 fewer per 1000, 64 fewer to 20 fewer, high certainty). Compared with standard care, two drugs probably reduce hospital admission in patients with non-severe disease: nirmatrelvir/ritonavir (36 fewer per 1000, 41 fewer to 26 fewer, moderate certainty) and molnupiravir (19 fewer per 1000, 29 fewer to 5 fewer, moderate certainty). Remdesivir may reduce hospital admission (29 fewer per 1000, 40 fewer to 6 fewer, low certainty). Only molnupiravir had at least moderate quality evidence of a reduction in time to symptom resolution (3.3 days fewer, 4.8 fewer to 1.6 fewer, moderate certainty); several others showed a possible benefit. Several drugs may increase the risk of adverse effects leading to drug discontinuation; hydroxychloroquine probably increases the risk of mechanical ventilation (moderate certainty). CONCLUSION: Corticosteroids, interleukin-6 receptor antagonists, and Janus kinase inhibitors probably reduce mortality and confer other important benefits in patients with severe covid-19. Molnupiravir and nirmatrelvir/ritonavir probably reduce admission to hospital in patients with non-severe covid-19. SYSTEMATIC REVIEW REGISTRATION: This review was not registered. The protocol is publicly available in the supplementary material. READERS' NOTE: This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication. This is the fifth version of the original article published on 30 July 2020 (BMJ 2020;370:m2980), and previous versions can be found as data supplements. When citing this paper please consider adding the version number and date of access for clarity.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/isolation & purification , Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Respiration, Artificial/statistics & numerical data , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Betacoronavirus/pathogenicity , COVID-19 , Centers for Disease Control and Prevention, U.S./statistics & numerical data , China/epidemiology , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/mortality , Coronavirus Infections/virology , Databases, Factual/statistics & numerical data , Drug Combinations , Evidence-Based Medicine/methods , Evidence-Based Medicine/statistics & numerical data , Glucocorticoids/therapeutic use , Humans , Hydroxychloroquine/therapeutic use , Lopinavir/therapeutic use , Network Meta-Analysis , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Randomized Controlled Trials as Topic , Ritonavir/therapeutic use , SARS-CoV-2 , Severity of Illness Index , Standard of Care , Treatment Outcome , United States/epidemiology , COVID-19 Drug Treatment
15.
BMJ ; 370: m2924, 2020 07 30.
Article in English | MEDLINE | ID: covidwho-691027

ABSTRACT

CLINICAL QUESTION: What is the role of remdesivir in the treatment of severe covid-19? This guideline was triggered by the ACTT-1 trial published in the New England Journal of Medicine on 22 May 2020. CURRENT PRACTICE: Remdesivir has received worldwide attention as a potentially effective treatment for severe covid-19. After rapid market approval in the US, remdesivir is already being used in clinical practice. RECOMMENDATIONS: The guideline panel makes a weak recommendation for the use of remdesivir in severe covid-19 while recommending continuation of active enrolment of patients into ongoing randomised controlled trials examining remdesivir. HOW THIS GUIDELINE WAS CREATED: An international panel of patients, clinicians, and methodologists produced these recommendations in adherence with standards for trustworthy guidelines using the GRADE approach. The recommendations are based on a linked systematic review and network meta-analysis. The panel considered an individual patient perspective and allowed contextual factors (such as resources) to be taken into account for countries and healthcare systems. THE EVIDENCE: The linked systematic review (published 31 Jul 2020) identified two randomised trials with 1300 participants, showing low certainty evidence that remdesivir may be effective in reducing time to clinical improvement and may decrease mortality in patients with severe covid-19. Remdesivir probably has no important effect on need for invasive mechanical ventilation. Remdesivir may have little or no effect on hospital length of stay. UNDERSTANDING THE RECOMMENDATION: Most patients with severe covid-19 would likely choose treatment with remdesivir given the potential reduction in time to clinical improvement. However, given the low certainty evidence for critical outcomes and the fact that different perspectives, values, and preferences may alter decisions regarding remdesivir, the panel issued a weak recommendation with strong support for continued recruitment in randomised trials.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , Betacoronavirus/isolation & purification , Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Adenosine Monophosphate/therapeutic use , Alanine/therapeutic use , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/mortality , Coronavirus Infections/virology , Guideline Adherence , Humans , Length of Stay/statistics & numerical data , Network Meta-Analysis , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Randomized Controlled Trials as Topic , Respiration, Artificial/statistics & numerical data , SARS-CoV-2 , Severity of Illness Index , Time Factors , Treatment Outcome , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL